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Abstract
This paper aims to optimize the shape of a fluid-to-fluid heat exchanger in order to maxi-

mize heat exchange under constraints of energy dissipation and volume. The novelty consists
in taking into account the thin layer separating the two fluids by using Ventcel-type second-
order transmission conditions. The physical model is then a weakly coupled problem between
the steady-state Navier-Stokes equations for the dynamics of the two fluids dynamics and the
convection-diffusion equation for the heat. We provide a shape sensitivity analysis and charac-
terize the shape derivatives involved. Finally, we demonstrate the feasibility and effectiveness
of the proposed method through 3D numerical simulations.
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1 Introduction
Shape optimization is a valuable tool in industrial contexts, with applications ranging from

design to production. The problems considered frequently involve multiphysics and complex ge-
ometries, which can present significant challenges. Numerical resolution of these problems can be
costly and limit the application of shape optimization. Consequently, reducing the cost of opti-
mization is paramount, and one approach is to consider asymptotic models that take into account
small physical or geometric parameters.

This work represents a progress in this direction: it consists in optimizing the geometry of a tube
in a heat exchanger, taking advantage of the property that the wall separating a heat transfer fluid
from a fluid to be heated is thin. The flow of two coupled fluids with different temperatures must
also be considered. To this end, we will employ an approximate model derived from asymptotic
analysis with respect to the small parameter represented by this thickness.

One of the original features of this work lies in the optimization of a surface where the quantity
of interest, the temperature, is discontinuous. Non-standard transmission conditions are satisfied
on this surface at the end of the asymptotic analysis. This problem is original and poses signif-
icant technical challenges, particularly in justifying the sensitivity analysis and implementing an
optimization method.
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Our contributions are twofold: first, a theoretical sensitivity analysis in relation to the transmis-
sion surface, and second, a numerical analysis with the implementation of a method of optimization
of this surface that is both efficient and robust in relation to this small parameter.

Organisation of the paper. The paper is organised as follows. Section 2 is devoted to the intro-
duction of the model problem, the optimization problem we focus on and the functional framework.
In Section 3, the shape sensitivity is performed: we prove the existence of the shape derivatives
and compute them to obtain an expression that can be used to perform numerical simulations.
In Section 4, we recall the classical numerical methods required for the shape optimization algo-
rithm and we discuss the numerical difficulties in solving the problem under consideration. Finally,
in Section 5, we perform 3D numerical simulations that highlight the efficiency of the proposed
method.

2 Formulation of the optimal heat exchanger design approx-
imated problem

2.1 Problem setting
A heat exchanger between two liquids is a system where two-fluids, one a heat transfer fluid and

the other to be heated, are separated by a solid wall. This solid wall is often very thin compared
to the size of the system. How to theoretically and numerically address the influence of this solid
interface is a major challenge both for formulating the model as a shape optimization problem
and for its subsequent solution. In this paper, we propose to address this difficulty using second-
order Ventcel-type transmission conditions (see [11] concerning the zero-order approximation, and
see [10] concerning a heat insulation problem). Accordingly, we will work with a domain composed
of two-fluids, where the effect of the solid part appears in the transmission conditions at the
interface.

The geometric setting. Let Ω be an open bounded connected domain of Rd (d = 2, 3), divided
into two open bounded subdomains Ω1,Ω2 which are separated by an interface Γ = ∂Ω1 ∩ ∂Ω2

that we assume to have non-zero measure in Rd−1 and to be C1. On part of the boundary of each
subdomain Ωi, i = 1, 2, Dirichlet and Neumann boundary conditions are imposed, on ΓD,i and ΓN,i

respectively, which in fact correspond to the inlet and outlet of each fluid. We also assume that the
inlets are well separated: ΓD,1∩ΓD,2 = ∅. The complementary of the boundary of each subdomain
is an exterior wall denoted Γe,i, and we thus have ∂Ωi = ΓD,i∪Γ∪ΓN,i∪Γe,i. Moreover, we assume
that ∂Γ ⊂ ∂Ω. Finally, we assume that the pipe containing the hot fluid exits the heat exchanger
orthogonally to it so that the tangential plane to Γe,2 is orthogonal to the tangential plane to Γ
on ∂Γ. Figure 1 illustrates our configuration.

The physical models. We consider a weak coupling by neglecting the influence of temperature
on the flow and the fluid expansion. On the one hand, the motion of the fluids is described by
the incompressible Navier-Stokes equations. On the other hand, the temperature field is modeled
by the convection-diffusion equation. This simplified model is already used in the literature, for
example in the work of Feppon et al. [16].

Concerning the fluids, we denote by ui the velocity and pi the pressure in the domain Ωi,
i = 1, 2. Let νi, ρi > 0 be the kinematic viscosity and the mass density, respectively, that for the
sake of simplicity, we consider constants. The boundary ΓD,i represents the inlet of the fluid, so
a given inlet velocity uD,i is given there. On the outlet boundary ΓN,i, a homogeneous Neumann
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Figure 1: The configuration of the 3D heat exchanger problem where Γe = Γe,2, Γe,1 = ∅.

boundary condition is imposed. Furthermore, Γ and Γe,i are respectively the wall between the fluids
and the exterior walls and a non-slip boundary condition is therefore imposed on these boundaries.
To summarize, for each i = 1, 2, the fluid flow is described by the following equations:

−νi∆ui + (∇ui)ui +
1

ρi
∇pi = 0 in Ωi,

div(ui) = 0 in Ωi,
ui = uD,i on ΓD,i,

σ(ui, pi)n = 0 on ΓN,i,
ui = 0 on Γ ∪ Γe,i,

(2.1)

where uD,i ∈ H
1/2
00 (ΓD,i)

d = {v|ΓD,i ,v ∈ H1(Ωi)
d,v|∂Ωi\ΓD,i

= 0} are the velocities of the fluids at
the inlet, where n denotes the exterior unit normal, and where σ(u, p) is the fluid stress tensor
defined by

σ(u, p) = 2νε(u)− p

ρ
I,

with ε(u) = 1
2 (∇u+∇ut) the symmetric gradient and I the identity matrix and where the super-

script t denotes the transpose matrix.
In the sequel, for a piece-wise smooth function ϕ defined on Ω, we denote by ϕi = ϕ|Ωi

its
restriction to Ωi, and we define the jump and mean of ϕ at the interface Γ by [·] and ⟨·⟩, respectively,
as follows:

[ϕ] = ϕ1 − ϕ2 and ⟨ϕ⟩ = ϕ1 + ϕ2
2

.

Then, in terms of temperature, which we denote as T, a given temperature is imposed at the entry
of the fluids and a homogeneous Neumann boundary condition at the outlet, meanwhile at the
interface there is an effective transmission condition associated to the solid. Then, the associated
thermal diffusivity κ1, κ2 and κs (κs is the thermal diffusivity of the solid) are assumed to be
constant positive numbers. After asymptotic analysis when the thickness η > 0 of the solid wall
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separating the fluids tends to 0, we obtain the following asymptotic model to order 1 in η:

−div(κi∇Ti) + ui · ∇Ti = 0 in Ωi, i = 1, 2,
Ti = TD,i on ΓD,i, i = 1, 2,

κi
∂Ti
∂n

= 0 on ΓN,i ∪ Γe,i, i = 1, 2,〈
κ
∂T

∂n

〉
= −κs

η
[T] on Γ,[

κ
∂T

∂n

]
= η divτ (κs∇τ ⟨T⟩)− κsH[T] on Γ, ,

κi
∂Ti
∂n

= 0 on ∂Γ, i = 1, 2,

(2.2)

where TD,i ∈ H1/2(ΓD,i) are the given input temperatures and where ui is the solution of the
Navier-Stokes equations (2.1). Here, H denotes the mean curvature of Γ, divτ is the tangential
divergence and ∇τ is the tangential gradient. Here and in the following, n is the unit normal to Γ
exterior to Ω1, that is, n = n1 = −n2.

The shape optimization problem. We want to optimize the shape of the pipe connecting the
inlet to the outlet of Ω1 in order to maximize the heat exchanged between the fluids under two
constraints: firstly, the volume of the pipe is prescribed, and secondly, the pressure drop seen from
the angle of the energy dissipated by the fluid must remain below a prescribed threshold. To work
with a minimization problem, we define the negative heat exchanged W as

W (Γ) =

∫
Ω1

u1 · ∇T1 dx−
∫
Ω2

u2 · ∇T2 dx, (2.3)

where ui and Ti, i = 1, 2, denote the respective solutions of the above problems (2.1) and (2.2).
We consider three constraints: firstly the energy dissipation Di, with a given threshold D0,i > 0
in the fluid labelled by i, defined as

Di(Γ) =

∫
Ωi

2νi|ε(ui)|2 dx−D0,i, i = 1, 2, (2.4)

and secondly the gap between the volume occupied by the hot fluid and a target volume V0 > 0
given by

V (Γ) =

∫
Ω1

1 dx− V0. (2.5)

The problem that we will consider in this article is the following:

inf
Γ
W (Γ) such that Di(Γ) ≤ 0, i = 1, 2, and V (Γ) = 0. (2.6)

2.2 Functional setting
To keep the notation as light as possible, we define

ΓD = ΓD,1 ∪ ΓD,2 and TD = TD,11ΓD,1
+ TD,21ΓD,2

,

where 1 denotes the indicator function. We consider the following affine spaces associated to the
non-homogeneous Dirichlet boundary data uD,i ∈ H

1/2
00 (ΓD,i)

d and TD,i ∈ H1/2(ΓD,i):

VuD,i
(Ωi) = {w ∈ H1(Ωi)

d; w = uD,i on ΓD,i and w = 0 on Γ ∪ Γe,i},

4



and
HTD

(Ω1,Ω2) = {ϕ = (ϕ1, ϕ2) ∈ H1(Ω1,Ω2); ϕ = TD on ΓD},

where
Hk(Ω1,Ω2) = {ϕ = (ϕ1, ϕ2) ∈ Hk(Ω1)×Hk(Ω2); ⟨ϕ⟩ ∈ Hk(Γ)}, k ∈ N∗.

The spaces V0(Ωi) and H0(Ω1,Ω2) are Hilbert spaces when they are equipped with the respective
norms ∥w∥V0(Ωi) = ∥w∥H1(Ωi)d and

∥ϕ∥H0(Ω1,Ω2) =

(
2∑
i=1

∥∇ϕi∥2L2(Ωi)d
+ ∥∇τ ⟨ϕ⟩ ∥2L2(Γ)d + ∥[ϕ]∥2L2(Γ)

)1/2

.

The space H0(Ω1,Ω2) is sometimes called broken Sobolev space. In the following, we also denote

Hk(Ωi,Γ) = {ϕ ∈ Hk(Ωi); ϕ|Γ ∈ Hk(Γ)}, k ∈ N∗.

Remark 2.1. Note that the norm ∥ · ∥H0(Ω1,Ω2) is equivalent to the norm

∥ · ∥H1(Ω1,Ω2) =

(
2∑
i=1

∥∇ · ∥2L2(Ωi)d
+ ∥∇τ ⟨·⟩ ∥2L2(Γ)d

)1/2

,

in H0(Ω1,Ω2), thanks to trace and Poincare’s inequalities.

Firstly, the Navier-Stokes equations (2.1) have the following variational formulation:

Find (ui, pi) ∈ VuD,i
(Ωi)× L2(Ωi) such that for all (w, r) ∈ V0(Ωi)× L2(Ωi),∫

Ωi

(
2νiε(ui) : ε(w) + (∇ui)ui ·w − pi

ρi
div(w)− r

ρi
div(ui)

)
dx = 0.

(2.7)

If the viscosity νi is large enough, this problem is well-posed, this is, there exists a unique weak
solution (ui, pi) ∈ VuD,i(Ωi) × L2(Ωi) (see for example [26] for details). As we are interested in
questions of optimal design rather than the existence of solutions to this type of problem, we
place ourselves in this context and assume that we have a unique solution to these Navier-Stokes
equations.

Secondly, for the temperature, the corresponding variational formulation of the approximated
convection-diffusion equation (2.2) is given by:

Find T = (T1,T2) ∈ HTD
(Ω1,Ω2) such that for all ϕ = (ϕ1, ϕ2) ∈ H0(Ω1,Ω2),

2∑
i=1

∫
Ωi

(κi∇Ti · ∇ϕi + ui · ∇Tiϕi) dx+

∫
Γ

(
ηκs∇τ ⟨T⟩ · ∇τ ⟨ϕ⟩+ κsH[T] ⟨ϕ⟩+ κs

η
[T][ϕ]

)
ds = 0.

(2.8)
This problem is non-standard. Its well-posedness was proved in our previous work [10, Theorem 2.1]
under the following additional hypothesis: the fluids leave the domain at the outlet:

ui · n ≥ 0 on ΓN,i, i = 1, 2. (2.9)

Remark 2.2. The assumption uD,i ∈ H
1/2
00 (ΓD,i)

d permits to ensure that the Dirichlet data belongs
to H1/2(ΓD,i ∪ Γ)d since we have ui = 0 on Γ and ui = uD,i on ΓD,i. Notice that, in particular,
Γ ∩ ΓD,1 ̸= ∅.
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Remark 2.3. Let us emphasize a point regarding the way to derive the previous variational formu-
lation. Let T the strong solution of (2.2) that we suppose H2(Ω1,Ω2) and ϕ ∈ H0(Ω1,Ω2). Using
Green’s formula on Γ, we get:∫

Γ

−(∆τ ⟨T⟩) ⟨ϕ⟩ ds =
∫
Γ

∇τ ⟨T⟩ · ⟨ϕ⟩ ds−
∫
∂Γ

⟨ϕ⟩∇τ ⟨T⟩ · τ̄dl,

where τ̄ is the unit tangent vector to Γ normal to ∂Γ, and dl is the (d − 2) dimensional measure
along ∂Γ. In our situation, τ̄ corresponds to the normal to ΓD on Γ ∩ ΓD and the normal to ΓN

on Γ ∩ ΓN. Then ∫
∂Γ

⟨ϕ⟩∇τ ⟨T⟩ · τ̄dl = 0

since ∇τ ⟨T⟩ · τ̄ = ∂⟨T⟩
∂n =

〈
∂T
∂n

〉
and since ∂Ti

∂n = 0 on ∂Γ, i = 1, 2.

3 Shape sensitivity analysis
We perform a shape sensitivity analysis relying on boundary variations. One novelty in our

work is the computation of the shape derivative of the non-standard equation (2.2) dealing with
the temperature field. The difficulty comes from the fact that these surface derivatives are involved
in a jump condition on an interface and are coupled with coefficient discontinuities. Since [1], we
know that in the case of sensitivity with respect to a conductivity discontinuity interface, only the
material derivative (not the shape derivative) exists in the variational space where the solution of
the state problem lives. Therefore, we have to first study material derivatives and then pass to
shape derivatives that will be used for numerical computations.

Admissible deformations. Only the interface Γ is subject to variations. For a positive real
number δ > 0, and for i = 1, 2, we define

ΩδD,i = {x ∈ Ωi; d(x,ΓD) < δ}.

We assume δ small enough to have ΩδD,1 ∩ ΩδD,2 = ∅. The set of admissible deformations Θad is
defined as

Θad = {θ ∈ C2(Ω)d ∩W2,∞(Ω)d; ∥θ∥W2,∞(Ω)d < 1, θ = 0 on ∂Ω, θ = 0 in ΩδD,i, i = 1, 2},

and we consider small perturbations of the interface Γ, for θ ∈ Θad:

Γθ = (I + θ)Γ and Ωθ
i = (I + θ)Ωi, i = 1, 2,

where I is the identity mapping from W2,∞ into W2,∞. Such deformations leave the Ω domain
and the vicinity of the inlet and outlet invariant, but allow the shape of the interface between the
hot and cold fluids to be modified.

Assumptions and notations. To compute the shape derivatives for this equation, we assume Γ
at least C3. We use the following overcharged notations. Let A be a matrix, A−1, At and A−t are
respectively its inverse, its transpose and the inverse of its transpose. Let dΩ1

be the signed distance
function to the domain Ω1. We set

n = ∇dΩ1
and H = ∆dΩ1

in a neighborhood of Γ. (3.1)
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These functions are defined in the volume and not only on the surface Γ. On the surface Γ, they
coincide respectively with the outer unit normal vector and of the mean curvature of Γ. Notice
that derivation with respect to a shape of terms involving a Laplace-Beltrami operator gives rise
to derivatives of curvature, which we can conveniently be expressed using these two functions. In
particular, writing ∂H

∂n makes sense with these definitions, even if it can be confusing at first sight.
In the following, we introduce (uθ,i, pθ,i) ∈ VuD,i(Ω

θ
i ) × L2(Ωθ

i ) and Tθ ∈ HTD(Ω
θ
1 ,Ω

θ
2) the

perturbed solutions, i.e. the solution of the Navier-Stokes equations defined in Ωθ
i (instead of Ωi)

and the approximated convection-diffusion equations (2.2) defined in Ωθ
1 ∪Ωθ

2 (instead of Ω1∪Ω2).

3.1 Shape sensitivity of the velocity and pressure
The shape calculus is well known for the solutions of the Stokes and Navier-Stokes equations: the

interested reader can refer to [6] for first order derivatives and [12, 9] for second-order derivatives.
Let us recall the expression of the material and shape derivatives of velocity and pressure.

Proposition 3.1 (Shape derivative of the Navier-Stokes equations). For each i = 1, 2, the material
derivative (u̇i, ṗi) ∈ V0(Ωi) × L2(Ωi) of the solution (ui, pi) ∈ VuD,i(Ωi) × L2(Ωi) of the Navier-
Stokes equations (2.1) exists and solves the following problem: Find (u̇i, ṗi) ∈ V0(Ωi) × L2(Ωi)
such that for all (wi, ϕi) ∈ V0(Ωi)× L2(Ωi),∫

Ωi

(
2νiε(u̇i) : ε(wi) + (∇u̇i)ui ·wi + (∇ui)u̇i ·wi −

ṗi
ρi

div(wi)−
ϕi
ρi

div(u̇i)

)
dx

=

∫
Ωi

−div(θ)(σ(ui, pi) : ∇wi + (∇ui)ui ·wi) dx

+

∫
Ωi

(σ(ui, pi) : (∇wi∇θ) + σ(wi, ϕi) : (∇ui∇θ) + (∇ui∇θ)ui ·wi) dx. (3.2)

Furthermore, assuming that (ui, pi) belongs to H2(Ωi)
d × H1(Ωi), it is differentiable with respect

to the domain and the shape derivatives (u′
i, p

′
i) ∈ H1(Ωi)

d × L2(Ωi) are characterized by

−νi∆u′
i + (∇ui)u′

i + (∇u′
i)ui +

1

ρi
∇p′i = 0 in Ωi,

div(u′
i) = 0 in Ωi,
u′ = 0 on ΓD,i ∪ Γe,i,

σ(u′
i, p

′
i)n = 0 on ΓN,i,

u′
i = −∂ui

∂n
(θ · n) on Γ.

(3.3)

3.2 Sensitivity of the temperature
3.2.1 Material derivative

We follow the usual procedure given in the book [21]: transport on a fixed domain, obtain the
differentiability by applying the implicit function theorem and then derive the material derivative.

Notice that, in the class Θad of deformations, the domain ΩδD,i is untouched by the deformation.
Then, we consider a lifting F of the Dirichlet data TD, independent of the deformation field θ,
such that

F ∈ H1(Ω), F = TD on ΓD and F = 0 in Ω\(ΩδD,1 ∪ ΩδD,2). (3.4)
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Such a lifting exists by considering, for instance, considering the solutions of the two following
problems, for i = 1, 2, 

−∆Fi = 0 in Ωδi ,

Fi = TD,i on ΓD,i,

Fi = 0 on ∂Ωδi \ ∂Ω,
∂Fi
∂n

= 0 on ∂Ωδi ∩ (∂Ω \ ΓδD,i),

where Ωδi = {x ∈ Ω; d(x,ΓD,i) < δ} is a subset of Ω that contains ΩδD,i. Then extending Fi by 0
to Ω, which extension we continue calling Fi and we define F := F1 + F2.

Finally, for θ ∈ Θad, we recall that Tθ is the solution of (2.8) in HTD(Ω
θ
1 ,Ω

θ
2) and we introduce

its correction by the lifting F of the Dirichlet boundary conditions:

Rθ = Tθ − F ∈ H0(Ω
θ
1 ,Ω

θ
2).

Proposition 3.2 (Material derivative of the approximated convection-diffusion equation). The
applications

θ ∈ Θad 7→ Rθ = Rθ ◦ (I + θ) ∈ H0(Ω1,Ω2) and θ ∈ Θad 7→ Tθ = Tθ ◦ (I + θ) ∈ H1(Ω1,Ω2)

are C1 in a neighborhood of 0. Furthermore, the derivative of the last mapping at 0, in the direc-
tion θ is called the material derivative of T ∈ HTD

(Ω1,Ω2), is denoted by Ṫ, and is the solution of
the following variational problem:

Find Ṫ ∈ H0(Ω1,Ω2) such that for all ϕ ∈ H0(Ω1,Ω2),

2∑
i=1

∫
Ωi

(
κi∇Ṫi · ∇ϕi +

(
ui · ∇Ṫi + u̇i · ∇Ti

)
ϕi

)
dx

+

∫
Γ

(
ηκs∇τ

〈
Ṫ
〉
· ∇τ ⟨ϕ⟩+ κsH[Ṫ] ⟨ϕ⟩+ κs

η
[Ṫ][ϕ]

)
ds

=

2∑
i=1

∫
Ωi

(
κi
(
∇θ +∇θt − div(θ)I

)
∇Ti · ∇ϕi + (((∇θ)ui − div(θ)ui) · ∇Ti)ϕi

)
dx

+

∫
Γ

ηκs
((
∇τθ +∇τθ

t − divτ (θ)I
)
∇τ ⟨T⟩

)
· ∇τ ⟨ϕ⟩ ds

−
∫
Γ

(κsH divτ (θ)[T] ⟨ϕ⟩ − κs∆τ (θ · n)[T] ⟨ϕ⟩+ κs∇H · θ[T]⟨ϕ⟩) ds

−
∫
Γ

κs
η

divτ (θ)[T][ϕ] ds. (3.5)

Proof. Step 1: transport on a fixed domain with a fixed interface. Let θ ∈ Θad. We define the
transported solution of the Navier-Stokes equations (2.1) uθ,i := uθ,i ◦ (I + θ) ∈ VuD,i

(Ωi). Given
ϕ ∈ H0(Ω1,Ω2), we define ϕθ = ϕ◦ (I+θ)−1 ∈ H0(Ω

θ
1 ,Ω

θ
2). One starts from the weak formulation

of the convection-diffusion equation (2.8) on the perturbed domain:

2∑
i=1

∫
Ωθ

i

(κi∇Tθ,i · ∇ϕθ,i + uθ,i · ∇Tθ,iϕθ,i) dx

+

∫
Γθ

(
ηκs∇τθ ⟨Tθ⟩ · ∇τθ ⟨ϕθ⟩+ κsHθ[Tθ] ⟨ϕθ⟩+

κs
η
[Tθ][ϕθ]

)
ds = 0,
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and Rθ satisfies,

2∑
i=1

∫
Ωθ

i

(κi∇Rθ,i · ∇ϕθ,i + uθ,i · ∇Rθ,iϕθ,i) dx

+

∫
Γθ

(
ηκs∇τθ ⟨Rθ⟩ · ∇τθ ⟨ϕθ⟩+ κsHθ[Rθ] ⟨ϕθ⟩+

κs
η
[Rθ][ϕθ]

)
ds

= −
2∑
i=1

∫
Ωδ

D,i

(κi∇F · ∇ϕi + uθ,i · ∇Fϕi) dx−
∫
Γ∩∂Ωδ

D,1

ηκs∇τF · ∇τ ⟨ϕ⟩ ds,

where we have used that the lifting F is independent of θ, satisfies [F ] = 0 on Γθ, F = 0 in
Ω\(ΩδD,1 ∪ ΩδD,2) and that the deformation field θ ∈ Θ verifies, θ = 0 in ΩδD,1 ∪ ΩδD,2.

After a change of variables to the reference configuration, one gets:

2∑
i=1

∫
Ωi

(
κiA(θ)∇Rθ,i · ∇ϕi +B(θ)uθ,i · ∇Rθ,iϕi

)
dx

+

∫
Γ

ηκsC(θ)
(
(I +∇θ)−1(I +∇θ)−t∇

〈
Rθ

〉)
· ∇ ⟨ϕ⟩ ds

−
∫
Γ

ηκsC(θ)
(
(I +∇θ)−t∇⟨Rθ⟩ · nθ ◦ (I + θ)

) (
(I +∇θ)−t∇⟨ϕ⟩ · nθ ◦ (I + θ)

)
ds

+

∫
Γ

(
κsC(θ)Hθ ◦ (I + θ)[Rθ] ⟨ϕ⟩+

κs
η
C(θ)[Rθ][ϕ]

)
ds

+

2∑
i=1

∫
Ωδ

D,i

(κi∇F · ∇ϕi + uθ,i · ∇Fϕi) dx+

∫
Γ∩∂Ωδ

D,1

ηκs∇τF · ∇τ ⟨ϕ⟩ ds = 0, (3.6)

where

A(θ) = |det(I +∇θ)| (I +∇θ)−1(I +∇θ)−t,
B(θ) = |det(I +∇θ)| (I +∇θ)−1,

C(θ) = |det(I +∇θ)| |(I +∇θ)−tn|Rd ,

where | · |Rd is the usual Eucledian norm in Rd.
Step 2: going for the implicit function theorem. Define F : Θad ×H0(Ω1,Ω2) 7→ (H0(Ω1,Ω2))

′

by: for all ϕ ∈ H0(Ω1,Ω2),

⟨F(θ, ψ), ϕ⟩ =
2∑
i=1

∫
Ωi

(κiA(θ)∇ψi · ∇ϕi +B(θ)uθ,i · ∇ψiϕi) dx

+

∫
Γ

ηκsC(θ)

((
(I +∇θ)−1(I +∇θ)−t∇⟨ψ⟩

)
· ∇ ⟨ϕ⟩

−
(
(I +∇θ)−t∇⟨ψ⟩ · nθ ◦ (I + θ)

) (
(I +∇θ)−t∇⟨ϕ⟩ · nθ ◦ (I + θ)

))
ds

+

∫
Γ

(
κsC(θ)Hθ ◦ (I + θ)[ψ] ⟨ϕ⟩+ κs

η
C(θ)[ψ][ϕ]

)
ds

+

2∑
i=1

∫
Ωδ

D,i

(κi∇F · ∇ϕi + uθ,i · ∇Fϕi) dx+

∫
Γ∩∂Ωδ

D,1

ηκs∇τF · ∇τ ⟨ϕ⟩ ds.

Let us check the assumptions of the implicit function theorem.
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• By construction
F(0,T− F ) = 0,

where T is the solution of the convection-diffusion problem (2.8) (with θ = 0).

• We now study the regularity of F . Let us first recall that θ ∈ Θad 7→ nθ ◦ (I + θ) ∈ C1(Γ)d

and θ ∈ Θad 7→ Hθ ◦ (I + θ) ∈ C0(Γ) are C1 (see , [21, Proposition 5.4.14, Lemma 5.4.15]).
Also, θ ∈ Θad 7→ uθ,i ∈ V0(Ωi) is C1 in a neighborhood of 0 as proven in [9] and uθ,i = uθ,i

in ΩδD,i. Moreover, from [21, Theorem 5.5.1], θ ∈ Θad 7→ A(θ) ∈ L∞(Ω,Md), θ ∈ Θad 7→
B(θ) ∈ L∞(Ω,Md), θ ∈ Θad 7→ C(θ) ∈ C1(Γ) are C∞, where Md is the space of d×d square
matrices. Finally, for every θ∗ ∈ Θad, the mapping

F(θ∗, ·) : H0(Ω1,Ω2) 7→ (H0(Ω1,Ω2))
′

is linear continuous and then C∞. By chain rule, we conclude that F is C1 in a neighborhood
of 0.

• Finally, we check that the operator DψF(0,T− F ) is an isomorphism from H0(Ω1,Ω2) into
(H0(Ω1,Ω2))

′. Indeed for all S, Ŝ ∈ H0(Ω1,Ω2), we compute

⟨DψF(0,T− F )S, Ŝ⟩ =
2∑
i=1

∫
Ωi

(
κi∇Si · ∇Ŝi +∇Si · uiŜi

)
dx

+

∫
Γ

(
ηκs∇τ ⟨S⟩ · ∇τ ⟨Ŝ⟩+ κsH[S][Ŝ] +

κs
η
[S][Ŝ]

)
ds.

This leads to a well-posed problem when the right hand side of the variational problem
belongs to (H0(Ω1,Ω2))

′, thanks to the Lax-Milgram theorem. The proof is analogous to the
well-posedness of problem (2.8). Indeed, let us consider ℓ ∈ (H0(Ω1,Ω2))

′. The coercivity
of the bilinear form at the left hand-side was already proved in [10, Theorem 2.1]. The only
difference is that we do not have necessarily the integral structure at the right hand-side,
but the continuity is straightforward since ℓ ∈ (H0(Ω1,Ω2))

′. By virtue of the Lax-Milgram
theorem, there exists a unique Sℓ ∈ H0(Ω1,Ω2) such that for all Ŝ ∈ H0(Ω1,Ω2),

2∑
i=1

∫
Ωi

(
κi∇Si · ∇Ŝi +∇Si · uiŜi

)
dx

+

∫
Γ

(
ηκs∇τ ⟨S⟩ · ∇τ ⟨Ŝ⟩+ κsH[S][Ŝ] +

κs
η
[S][Ŝ]

)
ds =

〈
ℓ, Ŝ
〉
(H0(Ω1,Ω2))′,H0(Ω1,Ω2)

.

By virtue of the implicit function theorem, there exists a C1 function

θ ∈ Θad 7→ ψ(θ) ∈ H0(Ω1,Ω2)

in a neighborhood of 0 such that, F(θ, ψ(θ)) = 0. By uniqueness of the solution Rθ ∈ H0(Ω
θ
1 ,Ω

θ
2)

and from (3.6), we deduce that Rθ = ψ(θ), then, θ ∈ Θad 7→ Rθ ∈ H0(Ω1,Ω2) is C1 in a neighbor-
hood of 0. Since F is independent of θ, we also obtain that θ ∈ Θad 7→ Tθ ∈ H1(Ω1,Ω2) is C1 in a
neighborhood of 0.

Step 3: characterization of the material derivative. To prove that the material derivative
satisfies (3.5), we proceeded as in [2, Proposition 6.30]. First, we write the variational problem
that solves Tθ after having performed the pull-back on the reference domain:

2∑
i=1

∫
Ωi

(
κiA(θ)∇Tθ,i · ∇ϕi +B(θ)uθ,i · ∇Tθ,iϕi

)
dx
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+

∫
Γ

ηκsC(θ)

((
(I +∇θ)−1(I +∇θ)−t∇

〈
Tθ

〉)
· ∇ ⟨ϕ⟩ (3.7)

−
(
(I +∇θ)−t∇⟨Tθ⟩ · nθ ◦ (I + θ)

) (
(I +∇θ)−t∇⟨ϕ⟩ · nθ ◦ (I + θ)

))
ds

+

∫
Γ

(
κsC(θ)Hθ ◦ (I + θ)[Tθ] ⟨ϕ⟩+

κs
η
C(θ)[Tθ][ϕ]

)
ds = 0.

Then, differentiating (3.7) at θ = 0 in the direction θ and using the following derivatives:

DA(0)(θ) = div(θ)I−∇θ − (∇θ)t,
DB(0)(θ) = div(θ)I−∇θ,
DC(0)(θ) = divτ (θ),

ṅ = −∇τ (θ · n) + (∇n)θ,
Ḣ = −∆τ (θ · n) +∇H · θ,

where ṅ and Ḣ are the material derivative of the extension of the normal and mean curvature.
Finally, we get (3.5) by means of chain rule.

3.2.2 Shape derivative of the temperature

We now characterize the shape derivative of the temperature. We begin by proving the following
lemma, which is useful for the following proof.

Lemma 3.3. Let θ ∈ Θad. Given u, ϕ ∈ H2(Γ), we have

−
∫
Γ

(
(divτ (θ)I−∇τθ −∇τθ

t)∇τu · ∇τϕ+∇τ (θ · ∇τu) · ∇τϕ−∆τu(θ · ∇τϕ)
)
ds

=

∫
Γ

divτ (H(θ · n)∇τu− 2(θ · n)(∇τn)∇τu)ϕds.

Proof. The proof is based on integration by parts on the boundary together with the decomposition
of the deformation vector: θ = θτ+(θ ·n)n on Γ. A key point is that, by definition both θ = 0 and
∂nθ = 0 on ∂Γ. As a consequence the boundary terms on ∂Γ disappear. We have the relations:∫

Γ

divτ (θ)∇τu · ∇τϕds =

∫
Γ

(H(θ · n)∇τu · ∇τϕ−∇τ (∇τu · ∇τϕ) · θ) ds

=

∫
Γ

(
H(θ · n)∇τu · ∇τϕ− (∇(∇τu)

t∇τϕ) · θτ − (∇(∇τϕ)
t∇τu) · θτ

)
ds,∫

Γ

(∇τθ∇τu) · ∇τϕds =

∫
Γ

((∇θτ∇τu) · ∇τϕ+ (θ · n)∇n∇τu · ∇τϕ) ds

=

∫
Γ

((θ · n)∇τn∇τu+∇θτ∇τu) · ∇τϕds,

∫
Γ

(∇τθ
t∇τu) · ∇τϕds =

∫
Γ

(
(θ · n)∇τn∇τu+ (∇θτ )t∇τu

)
· ∇τϕ ds,∫

Γ

−∆τu(θ · ∇τϕ) ds =

∫
Γ

∇τu · ∇(θτ · ∇τϕ) ds,∫
Γ

∇τ (θ · ∇τu) · ∇τϕ ds =

∫
Γ

∇(θτ · ∇τu) · ∇τϕ ds =

∫
Γ

(
∇τθ

t∇τu+∇(∇τu)
tθτ
)
· ∇τϕds.
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Summing up the above equations, we get∫
Γ

(divτ (θ)I−∇τθ −∇τθ
t)∇τu · ∇τϕ+∇τ (θ · ∇τu) · ∇τϕ−∆τu(θ · ∇τϕ) ds

=

∫
Γ

(
H(θ · n)∇τu · ∇τϕ− (∇(∇τu)

t∇τϕ) · θτ + (∇(∇τϕ)
t∇τu) · θτ

)
ds

−
∫
Γ

2(θ · n)(∇τn∇τu) · ∇τϕ+ (∇θτ +∇θtτ )∇τu · ∇τϕds

+

∫
Γ

∇τu ·
(
(∇θ)t∇τϕ+∇(∇τϕ)

tθτ
)
ds+

∫
Γ

(
∇θτ∇τu+∇(∇τu

t)θτ
)
· ∇τϕds

=

∫
Γ

(H(θ · n)∇τu− 2(θ · n)∇τn∇τu) · ∇τϕ ds

=

∫
Γ

divτ (H(θ · n)∇τu− 2(θ · n)(∇τn)∇τu)ϕds.

Proposition 3.4 (Shape derivative of the temperature). For each i = 1, 2, there exists an extension
T̃θ,i ∈ H1(Ω) of Tθ,i such that application θ ∈ Θad 7→ T̃θ,i ∈ L2(Ω) is C1 at 0 and the derivative,
denoted T′

i, is called the shape derivative of Ti. Moreover, if in addition T ∈ H2(Ω1,Γ)×H2(Ω2,Γ)
and ui ∈ H2(Ωi)

d, then the shape derivative
T′ = (T′

1,T
′
2) ∈ H0(Ω1,Ω2) is characterized by,

−div(κi∇T′
i) + ui · ∇T′

i = −u′
i · ∇Ti in Ωi, i = 1, 2,

T′
i = 0 on ΓD,i, i = 1, 2,

κi
∂T′

i

∂n
= 0 on ΓN,i ∪ Γe,i, i = 1, 2,〈

κ
∂T′

∂n

〉
= −

κs

η
[T′] + ξ1(T,θ · n) on Γ,[

κ
∂T′

∂n

]
= η divτ (κs∇τ ⟨T′⟩)− κsH[T′] + ξ2(T,θ · n) on Γ,

κi
∂T′

i

∂n
= 0 on ∂Γ, i = 1, 2,

(3.8)

with

ξ1(T,θ · n) = divτ ((θ · n) ⟨κ∇τT⟩)−
κs
η

(
H[T] +

[
∂T

∂n

])
(θ · n),

ξ2(T,θ · n) = divτ ((θ · n) [κ∇τT])− κs

(
H2[T] +H

[
∂T

∂n

]
+
∂H

∂n
[T]

)
(θ · n) + κs[T]∆τ (θ · n)

+ ηκs divτ (H(θ · n)∇τ ⟨T⟩ − 2(θ · n)(∇τn)∇τ ⟨T⟩) + ηκs∆τ

(
(θ · n)

〈
∂T

∂n

〉)
.

Proof. Let us introduce two linear continuous extensions Ei : H1(Ωi) 7→ H1(Ω), i = 1, 2. We
define T̃θ,i = Ei(Tθ,i) ◦ (I + θ)−1 ∈ H1(Ω) and since θ ∈ Θad 7→ T θ,i ∈ H1(Ωi) is C1 in a
neighborhood of 0, by chain rule, we get that θ ∈ Θad 7→ Ei(T θ,i) ∈ H1(Ω) is C1 in a neighborhood
of 0. By using [21, Lemma 5.3.3], we deduce that θ ∈ Θad 7→ Ei(Tθ,i) ◦ (I + θ)−1 ∈ L2(Ω) is C1 in
a neighborhood of 0.
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If in addition, Ti is H2(Ωi,Γ), then using the relationship between the material and the shape
derivative T′

i = Ṫi−∇Ti ·θ, i = 1, 2 and ⟨T⟩′ = ˙⟨T⟩−∇ ⟨T⟩ ·θ, yield that T′ belongs to H0(Ω1,Ω2).
Similarly for the velocity, we have that u′

i = u̇i − (∇ui)θ, i = 1, 2. Then, for any ϕ ∈ H0(Ω1,Ω2),
we split the expression:

2∑
i=1

∫
Ωi

(κi∇T′
i · ∇ϕi + (ui · ∇T′

i + u
′
i · ∇Ti)ϕi) dx

+

∫
Γ

(
ηκs∇τ ⟨T′⟩ · ∇τ ⟨ϕ⟩+ κsH[T′] ⟨ϕ⟩+ κs

η
[T′][ϕ]

)
ds = I1 + I2 + I3 + I4,

where

I1 =

2∑
i=1

∫
Ωi

(
κi
(
∇θ − div(θ)∇Ti − (∇2Ti)θ

)
· ∇ϕi

−
(
div(θ)ui · ∇Ti + (∇2Ti)ui · θ + (∇ui)θ · ∇Ti

)
ϕi

)
dx,

I2 = −κs
η

∫
Γ

(divτ (θ)[T][ϕ] + θ · [∇T][ϕ]) ds,

I3 = −κs
∫
Γ

(H divτ (θ)[T] ⟨ϕ⟩ −∆τ (θ · n)[T] ⟨ϕ⟩+ (∇H · θ)[T] ⟨ϕ⟩+H[∇T] · θ ⟨ϕ⟩) ds,

I4 = ηκs

∫
Γ

(
(∇τθ +∇τθ

t − divτ (θ)I)∇τ ⟨T⟩) · ∇τ ⟨ϕ⟩ − ∇τ (∇⟨T⟩ · θ) · ∇τ ⟨ϕ⟩
)
ds.

We treat each term separately. Let us first focus on I1. Using the identity

div((θ ·∇ϕi)∇Ti−(∇Ti ·∇ϕi)θ) = (θ ·∇ϕi)∆Ti+(∇θ)∇Ti ·∇ϕi−div(θ)∇Ti ·∇ϕi−θ ·(∇2Ti)∇ϕi
and that the solution of the convection-diffusion equation (2.2) satisfies κi∆Ti = ∇Ti · ui in Ωi,
we obtain

I1 =

2∑
i=1

∫
Ωi

(
κi div ((θ · ∇ϕi)∇Ti − (∇Ti · ∇ϕi)θ)− ui · ∇Ti(θ · ∇ϕi)

−
(
div(θ)ui · ∇Ti + (∇2Ti)ui · θ + (∇ui)θ · ∇Ti

)
ϕi

)
dx

=

2∑
i=1

∫
Ωi

(κi div((θ · ∇ϕi)∇Ti − (∇Ti · ∇ϕi)θ)− div(ϕi(∇Ti · ui)θ)) dx.

Then, by the divergence theorem, we get

I1 =

∫
Γ

([
κ
∂T

∂n
(θ · ∇ϕ)− κ(∇T · ∇ϕ)(θ · n)

]
− [ϕ(∇T · u)] (θ · n)

)
ds,

and using that ui = 0 on Γ and the gradient decomposition ∇ϕ = ∇τϕ+ ∂ϕ
∂nn,

I1 =

∫
Γ

[
κ
∂T

∂n
(θ · ∇τϕ)− (θ · n)κ∇τT · ∇τϕ

]
ds.

Moreover, integrating by parts on Γ and using the identity [ab] = [a] ⟨b⟩+ ⟨a⟩[b], we have∫
Γ

[κ∇τT · ∇τϕ](θ · n) ds = −
∫
Γ

[divτ ((θ · n)κ∇τT)ϕ] ds

= −
∫
Γ

(divτ ((θ · n) ⟨κ∇τT⟩)[ϕ] + divτ ((θ · n)[κ∇τT] ⟨ϕ⟩)) ds.
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Thus, integrating by parts appropriately on Γ and using the boundary conditions〈
κ
∂T

∂n

〉
= −κs

η
[T] and

[
κ
∂T

∂n

]
= ηκs∆τ ⟨T⟩ − κsH[T] on Γ,

we treat the first term

I1 =

∫
Γ

([
κ
∂T

∂n

]
θ · ∇τ ⟨ϕ⟩+

〈
κ
∂T

∂n

〉
θ · ∇τ [ϕ]

)
ds

+

∫
Γ

(
divτ ((θ · n) ⟨κ∇τT⟩)[ϕ] + divτ ((θ · n)[κ∇τT]) ⟨ϕ⟩

)
ds

=

∫
Γ

(
(ηκs∇τ ⟨T⟩ − κsH[T])∇τ ⟨ϕ⟩ · θ − κs

η
∇τ [ϕ] · θ

)
ds

+

∫
Γ

(divτ ((θ · n) ⟨κ∇τT⟩)[ϕ] + divτ ((θ · n)[κ∇τT]) ⟨ϕ⟩) ds

=

∫
Γ

(
divτ (κsH[T]θ) ⟨ϕ⟩ − κsH

2[T](θ · n) ⟨ϕ⟩+ κs
η

divτ ([T]θ)[ϕ]−
κs
η
H[T](θ · n)[ϕ]

)
ds

+

∫
Γ

(
divτ ((θ · n) ⟨κ∇τT⟩)[ϕ] + divτ ((θ · n)[κ∇τT]) ⟨ϕ⟩+ ηκs∆τ ⟨T⟩∇τ ⟨ϕ⟩ · θ

)
ds.

For I2 and I3, we decompose the gradient, which yields to

I2 = −κs
η

∫
Γ

(
divτ (θ)[T][ϕ] + (θ · n)

[
∂T

∂n

]
[ϕ] + (θ · [∇τT])[ϕ]

)
ds

= −κs
η

∫
Γ

(
divτ ([T]θ)[ϕ] +

∂T

∂n
(θ · n)

)
ds

and

I3 = −κs
∫
Γ

(
H divτ (θ)[T]⟨ϕ⟩+Hθ · [∇τT]⟨ϕ⟩+H(θ · n)

[
∂T

∂n

]
⟨ϕ⟩

+

(
−∆τ (θ · n) + ∂H

∂n
(θ · n) + θ · ∇τH

)
[T]⟨ϕ⟩

)
ds

= −κs
∫
Γ

(
H divτ ([T]θ) +H

[
∂T

∂n

]
(θ · n)−∆τ (θ · n)[T] + ∂H

∂n
(θ · n)[T] + θ · ∇τH[T]

)
⟨ϕ⟩ds

= −κs
∫
Γ

(
divτ (H[T]θ) +H

[
∂T

∂n

]
(θ · n)−∆τ (θ · n)[T] + ∂H

∂n
(θ · n)[T]

)
⟨ϕ⟩ds.

Finally, for I4, thanks to Lemma 3.3, we have

I4 = ηκs

∫
Γ

((
∇τθ +∇τθ

t − divτ (θ)I)∇τ ⟨T⟩ − ∇τ (θ · ∇τ ⟨T⟩)
)
· ∇τ ⟨ϕ⟩

)
ds

−ηκs
∫
Γ

∇τ

(
(θ · n)

〈
∂T

∂n

〉)
· ∇τ ⟨ϕ⟩ds

= ηκs

∫
Γ

(
divτ (H(θ · n)∇τ ⟨T⟩ − 2(θ · n)(∇τn)∇τ ⟨T⟩) ⟨ϕ⟩ −∆τ ⟨T⟩(θ · ∇τ ⟨ϕ⟩)

)
ds

−ηκs
∫
Γ

∇τ

(
(θ · n)

〈
∂T

∂n

〉)
· ∇τ ⟨ϕ⟩ds

= ηκs

∫
Γ

(
divτ (H(θ · n)∇τ ⟨T⟩ − 2(θ · n)(∇τn)∇τ ⟨T⟩) ⟨ϕ⟩ −∆τ ⟨T⟩(θ · ∇τ ⟨ϕ⟩)

)
ds

+ηκs

∫
Γ

∆τ

(
(θ · n)

〈
∂T

∂n

〉)
⟨ϕ⟩ds.

We conclude by adding I1, I2, I3 and I4.
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3.3 Shape derivative of the objective functionals
The volume. We recall that the shape derivative of the volume V is given, for all θ ∈ Θad by

V ′(Γ)(θ) =

∫
Γ

θ · nds. (3.9)

The dissipated energy. We obtain the expression of the shape derivative of the dissipated
energy (2.4) using Proposition 3.1 and the chain rule (see also [6, 22, 12] for details). In the
following, to simplify the writing, we define the region sign si as

si =

{
1 if i = 1,

−1 if i = 2.

Proposition 3.5 (Shape derivative of the dissipation energy). Let θ ∈ Θad and, for i = 1, 2, let
(vi, qi) ∈ V0(Ωi) × L2(Ωi) be the solution of the following adjoint equation of the Navier-Stokes
equations associated to the dissipation energy:

−νi∆vi + (∇ui)tvi − (∇vi)ui +
1

ρi
∇qi = −2νi∆ui in Ωi,

div(vi) = 0 in Ωi,
vi = 0 on ΓD,i ∪ Γe,i ∪ Γ,

σ(vi, qi)n+ (ui · n)vi = 4νε(ui)n on ΓN,i.

, (3.10)

If (ui, pi), (vi, qi) ∈ H2(Ωi)
d × H1(Ωi), then the shape derivative of the dissipation energy is given

by

D′
i(Γ)(θ) = 2νi

∫
Γ

si(ε(ui) : ε(vi)− |ε(ui)|2)(θ · n) ds. (3.11)

Heat exchanged. We define the two following mappings fi ∈ (H1(Ωi))
′ and gi ∈ (H1(Ωi)

d)′,
given by:

⟨fi,S⟩(H1(Ωi))′,H1(Ωi)
=

∫
Ωi

siui · ∇Si dx, ∀S ∈ H1(Ωi),

⟨gi,w⟩(H1(Ωi)d)′,H1(Ωi)d
=

∫
Ωi

siw · ∇Ti dx, ∀w ∈ H1(Ωi)
d,

where ui and Ti are the respective solutions of (2.1) and (2.2).

Proposition 3.6 (Shape derivative of the exchanged heat). Let θ ∈ Θad and let introduce
R = (R1,R2) ∈ H0(Ω1,Ω2) the adjoint of the approximated-convection diffusion equation (2.1)
associated to the heat exchanged:

−div(κi∇Ri + Riui) = fi in Ωi, i = 1, 2,
Ri = 0 on ΓD,i, i = 1, 2,

κi
∂Ri

∂n
= 0 on ΓN,i ∪ Γe,i, i = 1, 2,〈

κ
∂R

∂n

〉
= −

κs

η
[R]− κsH ⟨R⟩ on Γ,[

κ
∂R

∂n

]
= η divτ (κs∇τ ⟨R⟩) on Γ,

κi
∂Ri

∂n
= 0 on ∂Γ, i = 1, 2,

(3.12)
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and (vi, qi) ∈ V0(Ωi) × L2(Ωi) the adjoint of the Navier-Stokes equations (2.1) associated to the
heat exchanged:

−νi∆vi + (∇ui)tvi − (∇vi)ui +
1

ρi
∇qi = −Ri∇Ti + gi in Ωi,

div(vi) = 0 in Ωi,
vi = 0 on ΓD,i ∪ Γ ∪ Γe,i,

σ(vi, qi)n = 0 on ΓN,i,

(3.13)

for each i = 1, 2.
The heat exchanged W defined in (2.3) is shape differentiable and if T = (T1,T2) ∈ H2(Ω1,Γ)×

H2(Ω2,Γ), R = (R1,R2) ∈ H2(Ω1,Γ)×H2(Ω2,Γ) and (ui, pi), (vi, qi) ∈ H2(Ωi)
d×H1(Ωi), then the

shape derivative W ′(Γ)(θ) can be expressed in the following surface shape derivative form:

W ′(Γ)(θ) =

∫
Γ

(
2[νε(u) : ε(v)]− [κ∇T · ∇R] + 2

[
κ
∂T

∂n

∂R

∂n

])
(θ · n) ds

−
∫
Γ

(
ηκs(HI− 2∇τn)∇τ ⟨T⟩ · ∇τ ⟨R⟩+

κs
η
H[T][R]

)
(θ · n) ds

− κs

∫
Γ

(
H2[T]⟨R⟩ −∆τ ([T]⟨R⟩) +

∂H

∂n
[T]⟨R⟩

)
(θ · n) ds. (3.14)

Remark 3.7. Both adjoint equations (3.12) and (3.13) are well-posed. The adjoint of the approx-
imated convection-diffusion equation is well-posed by Lax-Milgram, analogously to (2.2) (see [10]).
The equation (3.10) is a linearization of the Navier-Stokes (transposed) and the proof is an adap-
tation of the Navier-Stokes case (see [19, Chapter IV] or [9] for details).

Proof. Step 1: differentiability. The crucial point is the differentiability in a neighborhood of 0,
of θ ∈ Θad 7→ Tθ ∈ H1(Ω1,Ω2) and θ ∈ Θad 7→ uθ,i ∈ H1(Ωi)

d, i = 1, 2. The first one was proved
in Proposition 3.2 and the second one in [9]. Then, recalling that

W (Γθ) =

2∑
i=1

∫
Ωθ

i

siuθ,i · ∇Tθ,i dx,

and doing a change of variables (similarly to the proof of Proposition 3.2), we obtain

W (Γθ) =

2∑
i=1

∫
Ωi

si(I +∇θ)−1uθ,i · ∇Tθ,i|det(I +∇θ)|dx. (3.15)

Using the chain rule (the differentiability of the other terms is classical, though it was discussed in
the proof of Proposition 3.2), we conclude that W is shape differentiable.

Step 2: shape derivative computation. Since ui ∈ H2(Ωi)
d and Ti ∈ H2(Ωi,Γ), i = 1, 2, then

thanks to Proposition 3.4, u′
i ∈ H1(Ωi)

d and T′
i ∈ H1(Ωi,Γ). Differentiating (2.3), using the

classical formulas of shape derivatives of integral functionals and by chain rule,

W ′(Γ)(θ) =

2∑
i=1

∫
Ωi

si (ui · ∇T′
i + u

′
i · ∇Ti) dx+

2∑
i=1

∫
Γ

si(ui · ∇Ti)(θ · ni) ds,

where ni is the unitary normal at Γ, exterior to Ωi. Using that ui = 0 on Γ, we obtain:

W ′(Γ)(θ) =

2∑
i=1

∫
Ωi

si (ui · ∇T′
i + u

′
i · ∇Ti) dx. (3.16)
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Then, we proceed as it is standard, this is, we multiply each equation of the shape derivative of
the states by its respective adjoint, and then we integrate by parts using the boundary conditions
that satisfy each solution. Conversely, we multiply the adjoint equation by the corresponding shape
derivative and then we integrate. Hence, multiplying (3.8) by R, (3.3) by vi, (3.12) by T′, (3.13)
by u′

i and integrating in Ω (or Ωi in the Navier-Stokes case), we get

2∑
i=1

∫
Ωi

(κi∇T′
i · ∇Ri + Riui · ∇T′

i + Riu
′
i · ∇Ti) dx

+

∫
Γ

(
ηκs∇τ ⟨T′⟩ · ∇τ ⟨R⟩+ κsH[T′] ⟨R⟩+ κs

η
[T′][R]

)
ds

=

∫
Γ

(ξ1(T,θ · n)[R] + ξ2(T,θ · n) ⟨R⟩) ds, (3.17)

∫
Ωi

(
2νiε(u

′
i) : ε(vi) + (∇u′

i)ui · vi + (∇ui)u′
i · vi −

qi
ρi

div(u′
i)−

p′i
ρi

div(vi)

)
dx = 0, (3.18)

2∑
i=1

∫
Ωi

(κi∇Ri · ∇T′
i + Riui · ∇T′

i) dx

+

∫
Γ

(
ηκs∇τ ⟨R⟩ · ∇τ ⟨T′⟩+ κsH[R] ⟨T′⟩+ κs

η
[R][T′]

)
ds =

2∑
i=

∫
Ωi

si∇T′
i · ui dx, (3.19)

and∫
Ωi

(
2νiε(vi) : ε(u

′
i) + (∇u′

i)ui · vi + (∇ui)u′
i −

qi
ρi

div(u′
i)−

p′i
ρi

div(vi)

)
dx

+

∫
Ωi

Ri∇Ti · u′
i dx+

∫
Γ

siσ(vi, qi)n · ∂ui
∂n

(θ · n) ds =
2∑
i=1

∫
Ωi

si∇Ti · u′
i dx. (3.20)

Using the above identities in (3.16), we obtain

W ′(Γ)(θ) =

∫
Γ

(
[σ(v, q)n · ∂u

∂n
(θ · n)] + ξ1(T,θ · n)[R] + ξ2(T,θ · n) ⟨R⟩

)
ds.

Integrating by parts and using that

[
σ(v, q)n ·

∂u

∂n
(θ · n)

]
= 2[ε(u) : ε(v)], we get

W ′(Γ)(θ) =

∫
Γ

f (θ · n) ds,

where

f = 2[νε(u) : ε(v)]− [κ∇τT · ∇τR]− ηκs(HI− 2∇τn)∇τ ⟨T⟩ · ∇τ ⟨R⟩+
κs
η
H[T][R]

− κs

(
H2[T] ⟨R⟩ −∆τ ([T] ⟨R⟩) +

∂H

∂n
[T] ⟨R⟩

)
+ ηκs∆τ (⟨R⟩)

〈
∂T

∂n

〉
−
κs

η
[R]

[
∂T

∂n

]
− κsH ⟨R⟩

[
∂T

∂n

]
.
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Since R is the solution of the adjoint of the convection-diffusion equation (3.13),

ηκs∆τ (⟨R⟩)
〈
∂T

∂n

〉
− κs

η
[R]

[
∂T

∂n

]
− κsH ⟨R⟩

[
∂T

∂n

]
=

[
κ
∂R

∂n

∂T

∂n

]
,

leading to the same expression as in (3.14).

4 Numerical methods used to solve the involved problems

4.1 Shape optimization framework
The level-set method. In the context of shape optimization, the level set evolution method
was introduced by Allaire et al. in [4]. The domain Ω is fixed, we describe each subdomain Ωi by
means of a level set function ϕ : Ω → R to track the interface Γ that we aim to optimize. Then,
the mesh on Ω is done based on the level-set ϕ, identifying Γ to the zero level set of ϕ:

x ∈ Ω1 ⇐⇒ ϕ(x) < 0,

x ∈ Γ ⇐⇒ ϕ(x) = 0,

x ∈ Ω2 ⇐⇒ ϕ(x) > 0.

After initialization, at the step n of the shape optimization process, we compute the level set ϕn
by solving the following equation,

∂ϕn

∂t
+ θ · ∇ϕn = 0, 0 < t < τ, x ∈ Ω,

ϕn(0, x) = ϕn−1(x), x ∈ Ω,
(4.1)

where τ > 0 is the descent step in the shape optimization algorithm and θ is an appropriate velocity
field, such that τ∥θ∥L∞(Ω)d is of the order of mesh size h. Numerically speaking, Equation (4.1)
can be computed by advect (see [7]) and the remeshing step by mmg (see [13]).

Null space optimization method. As constrained optimization algorithm, we rely on the
null space algorithm introduced in [17] under the implementation of Feppon [15]. This method
first decreases the violation of the constraint in order to be feasible, then minimizes the objective
function. The used descent direction θ is obtained by an extension-regularization procedure: find
θ ∈ Θer = {ψ ∈ H1(Ω)d; ψ = 0 on ∂Ω; ψ = 0 in ΩδD,1 ∪ ΩδD,2}, such that for all ψ ∈ Θer,∫

Ω

100h2∇θ : ∇ψ + θ ·ψ dx = J ′(Γ)(ψ), (4.2)

where h is the mesh size and J(Γ) is a linear combination between the functionals involved in the
problem: W (Γ), D1(Γ), D2(Γ) and V (Γ), which weights are given by the optimization algorithm.
The output deformation field is such that ∥θ∥L∞(Ω)d is of the order of the mesh size scale h and
the the optimization step τ can be chosen as 1.

4.2 Numerical resolution with FEM
Navier-Stokes equations. We use the augmented Lagrangian preconditionner proposed by [24]
to solve the Navier-Stokes equations (2.1). In this method, one penalizes the divergence and uses
a Newton iteration method with a field split structure. We also penalize the divergence for the
adjoint equation (3.13). We use the softwares FreeFem++ (see [20]) and PETSc (see [5]).
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Nitsche extended finite element method for a Ventcel transmission problem with
discontinuities at the interface The approximate convection-diffusion (2.2) and its adjoint
equations can not be implemented directly due to the use of the broken Sobolev spaces such
as H0(Ω1,Ω2). Allaire et al proposed a method in [3] to approximate this kind of equations in
order to use any finite element software with spaces of continuous functions. However this method
involves to duplicate the degrees of freedom, which we do not want for our 3D simulations. Indeed,
it becomes very expensive in our context. In the case of the variational formulation (2.8) of the
convection-diffusion problem (2.2), the associated bilinear form, denoted by a(·, ·), can be split as
a(·, ·) = b(·, ·) + c(·, ·), where

b(ϕ, S) =

2∑
i=1

∫
Ωi

(κi∇ϕi · ∇Si + Siui · ∇ϕi) dx+

∫
Γ

(ηκs∇τ ⟨ϕ⟩ · ∇τ ⟨S⟩+ κsH[ϕ] ⟨S⟩) ds,

c(ϕ, S) =
κs
η

∫
Γ

[ϕ][S] ds,

defined for any ϕ, S ∈ H1(Ω1,Ω2). In our the case, the model comes from an asymptotic develop-
ment and the parameter η is takes small values. The term c(T,S) then produces poor conditioning
and the resolution based on this formulation is then slow and unprecise.

We hence use instead the Nitsche approach [25] introduced in [8] to stabilize our formulation
with respect to η by improving the conditioning of the matrix. Since this is a dedicated method,
we briefly present it. For the sake of simplicity, in this part, we suppose TD to be a P1 function
(defined in all Ω).

Let Th be a regular simplicial mesh of Ω and let Fh be the set of faces of Th, Fh,Γ the set of
faces situated on Γ and Th,Γ the set of elements which have one face on Γ. Let hF be the diameter
of the face F ∈ Fh,Γ. We consider the polynomial spaces

P1
h := {Sh ∈ C(Ω1)× C(Ω2);Sh|K ∈ P1,∀K ∈ Th} and P1

h,0 := P1
h ∩H0(Ω1,Ω2).

Then, we define the following mesh-depending bilinear form, for any Th,Sh ∈ P1
h,

ah(Th,Sh) = a(Th,Sh)−
∑

F∈Fh,Γ

γηhF
η + γκshF

(〈
κ
∂Th
∂n

〉
+
κs
η
[Th],

〈
κ
∂Sh
∂n

〉
+
κs
η
[Sh]

)
L2(F )

.

where γ > 0 is a stabilization parameter, that it chosen small enough in order to guarantee the
coercivity of ah. To approximate the solution of (2.2), we consider the Nitsche type formulation:

Find Th ∈ P1
h with Th = TD on ΓD, such that

ah(Th,Sh) = 0, ∀Sh ∈ P1
h,0.

(4.3)

By adapting the arguments of [8, Theorem 4.6]), we can easily provide error estimates stated as
usually in Nitsche method in the mesh-dependent norm on P1

h defined by:

|||·|||2h =

2∑
i=1

∥κ1/2i ∇ · ∥2L2(Ωi)d
+ ∥(κsη)1/2∇τ ⟨·⟩ ∥2L2(Γ)d +

∑
F∈Fh,Γ

κs
η + γκshF

∥[·]∥2L2(F ).

Theorem 4.1 (Error estimate in energy norm). Let T ∈ HTD(Ω1,Ω2) the solution of the continu-
ous convection-diffusion equation (2.2) and Th the solution of the (discrete) Nitsche problem (4.3).
If in addition T ∈ H2(Ω1,Ω2), for γ sufficiently small, there exists a constant C > 0 independent
of h and η such that:

|||T− Th|||h ≤ Ch

( 2∑
i=1

∥κ1/2i (Ti − TD,i)∥2H2(Ωi)
+ ∥(κsη)1/2 ⟨T⟩ ∥2H2(Γ) +

∑
F∈Fh,Γ

κs
γhF

∥[T]∥2H1(F )

)1/2

.

We proceed in a similar way concerning the adjoint equation (3.12).
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Numerical computation of the curvature terms. We conclude this part by highlighting
some original features and difficulties in computing the shape derivatives involved in the problem
under consideration. In particular, we recall how to compute numerically a regularized version of
the discretized unit normal and a discretized version of the mean curvature. Finally, the term ∂nH
in the shape derivative expressions (3.14) is delicate to treat: consequently, we now explain how we
deal with it. The issue comes when we use the level formalism and in particular P1 finite elements
as discretization of the signed distance function dΩ1

.
Let us first explain how to compute the extensions of the unit normal and the mean curvature.

As we said earlier in (3.1), we have that

n = ∇dΩ1 and H = ∆dΩ1 on Γ.

Numerically, we compute dΩ1
by using mshdist [14], discretized as a P1 function denoted dh in

the following. Then, we follow the work [18] that proposes a variational method to regularize and
approximate the mean curvature in the following two steps. Firstly, we solve the following problem:

Find gh ∈ (H1(Ω) ∩ P1)d such that,

∀φh ∈ (H1(Ω) ∩ P1)d,

∫
Ω

gh ·φh dx =

∫
Ω

∇dh ·φh dx.

The output gh is a regularized version of nh = ∇dh, since it is P1 instead of P0. Similarly, we
compute a discretized version of the mean curvature H to be P1, denoted by Hh by solving the
problem:

Find Hh ∈ H1(Ω) ∩ P1 such that,

∀ϕh ∈ H1(Ω) ∩ P1,

∫
Ω

(
10h2∇Hh · ∇ϕh +Hhϕh

)
dx =

∫
Ω

div(gh)ϕh dx.

To compute ∂nH, we use the identity ∂nH = −∥∇n∥2F , where ∥ · ∥F denotes the Frobenius norm
of a matrix. Hence we use the previous formula, also used in [23], with gh as discretization of n.
For the sake of completeness, we detail the proof this relation: n = ∇dΩ1

is an extension of the
unit normal to ∂Ω1, unitary in a neighborhood of ∂Ω1 ∥n∥2 = ∥∇dΩ1∥2 = 1 in a neighborhood of
∂Ω1. Differentiating this identity, in particular we get ∆(∥n∥2) = 0 on ∂Ω1, and using the identity
∆(u · v) = I∆u · v + I∆v · u+ 2∇u : ∇v with u = v = n, we obtain:

2I∆n · n+ 2∥∇n∥2F = 0.

4.3 Summary: brief description of the algorithm used
To summarize the complete shape optimization procedure, we present below each step with the

associated computational code or library we use in Algorithm 1.

5 Numerical results
In this final section, we present the numerical simulations that we have performed in the

three-dimensional case. We will focus on two typical situations in heat exchangers: crossflow
and co-current flow. The purpose of these simulations is to illustrate our results and prove the
feasibility and effectiveness of the proposed method. We performed medium/large scale numerical
simulations, ranging from 100 to 500 thousand vertices and 1 to 2.5 million tetrahedra. In this way,
we illustrate the ability of the method studied to provide new designs that increase the performance
of the initial design of the heat exchanger while verifying the constraints.
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Algorithm 1 Level-set mesh evolution method

Require an initial split domain Ω0
1,Ω

0
2 ⊂ Ω.

for n = 0, . . . , nmaxiter do
Current subdomains Ωn1 ,Ω

n
2 represented by the mesh TΩn

i
⊂ TΩ, i = 1, 2.

Solve (2.1): the Navier-Stokes equations. ▷ FreeFem++
Solve (3.10): the adjoint equation of the Navier-Stokes equations

associated to the dissipation energy. ▷ FreeFem++
Solve (2.2): the convection-diffusion equation, using Nitsche method. ▷ C++ in-house code
Solve (3.12): the adjoint equation of the convection-diffusion equation

associated to the heat exchanged, using Nitsche method. ▷ C++ in-house code
Solve (3.13): the adjoint equation of the Navier-Stokes equations

associated to the heat exchanged. ▷ FreeFem++
Compute the gradients by extension-regularization. ▷ FreeFem++
Compute the deformation field θ. ▷ Null-space algorithm
Update the level-set function ϕn+1 by advection. ▷ mshdist and advect
Remesh thanks to ϕn+1. ▷ mmg

end for

We will solve the problem (2.6) for two different test cases where we choose D0,i, i = 1, 2 as k
times (k ∈ N∗) the initial dissipation of the fluid i and V0 as the initial volume of the hot fluid.
In the following, we consider the box Ω = [0, 1] × [0, 1] × [0, 1]. Moreover, we fix some constants
r1, r2, yc, Yc > 0 (described below for each case) and we then define

ΓD,1 = {(x, y, 0) ∈ Ω; (x− 0.5)2 + (y − yc)
2 = r21},

ΓN,1 = {(x, y, 1) ∈ Ω; (x− 0.5)2 + (y − Yc)
2 = r21},

ΓD,2 = {(x, 0, z) ∈ Ω; (x− 0.5)2 + (z − 0.5)2 = r22},
ΓN,2 = {(x, 1, z) ∈ Ω; (x− 0.5)2 + (z − 0.5)2 = r22}.

Additionally, we consider the following inlet velocity

uD,1 = (0, 0, (r21 − (x− 0.5)2 − (y − yc)
2)/r21),

uD,2 = (0, (r22 − (x− 0.5)2 − (z − 0.5)2)/r22, 0),

that follows a parabolic profile, and the inlet temperature TD,1 = 10, TD,2 = 0. Finally, we use
the parameters given in Table 1.

κ1 4× 10−3 m2s−1 κ2 10−3 m2s−1 κs 10−2 m2s−1

ν1 2 m2s−1 ν2 1 m2s−1 η 10−2

Table 1: Values of the physical parameters

5.1 First example: Crossflow cylinder case
In this case, we choose yc = Yc = 0.5, r1 = r2 = 0.25 and D0,i, i = 1, 2 to be k = 5 times the

initial dissipation value of the respective fluid, which gives in the presented simulation D0,1 = 60,
D0,2 = 25 and V0 = πr21 ≈ 0.194. It should be noted that the most time-consuming part is the
resolution of the Navier-Stokes equations, since the degrees of freedom are about 2 and 4 millions
for the cold and hot Navier-Stokes equations, respectively.

The obtained results are shown in Figures 2. The convergence history for the functionals is
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(a) Initial domain Ω. (b) Final domain Ω.

Figure 2: Initial and final domain Ω for the first example.

(a) Objective function W . (b) Dissipation constraints Di. (c) Volume constraint V .

Figure 3: Convergence history for the first example.

depicted on Figure 3, where the exchanged heat improved is about 135%.
We observe that there is a change in the topology. This can be explained by the fact that, since

we are considering a co-current flow, the cold fluid has to ’pass through’ the thermal fluid instead
of ’avoiding’ it to increase the heat exchanged. In addition, the contact surface has increased,
which makes sense because it allows more exchange zones.

5.2 Second example: Co-current flow tube case
In this case, we consider yc = 0.25, Yc = 0.75, r1 = 0.1, r2 = 0.1 and D0,i, i = 1, 2 to be 5 times

the initial dissipation value of the respective value, which gives in the presented simulations D0,1 =
85, D0,2 = 5, and V0 ≈ 0.0456. We consider here a more complicated initial configuration and
thinner hot domain. Here, the hot and cold Navier-Stokes equations have about 0.5 and 1.5
millions degrees of freedom, respectively. The obtained results are shown in Figures 4 and 5. The
convergence history is depicted on Figure 6, where the exchanged heat improved in about 50%.
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(a) Initial domain Ω. (b) Final domain Ω.

Figure 4: Initial and final domain Ω for the second example.

(a) Left view. (b) Right view.

Figure 5: Lateral views of the tube at the last performed iteration.
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(a) Objective function W . (b) Dissipation constraints Di. (c) Volume constraint V .

Figure 6: Convergence history for the second example.
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